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14 Abstract
15 Understanding future eruptions and their potential consequences is an important component 

16 of volcanic disaster risk reduction. Suites of scenarios are a useful compromise between fully 

17 probabilistic and fully deterministic (single scenario) approaches. In this paper, we present an 

18 interdisciplinary approach that combines stakeholder (volcanologists, disaster risk 

19 researchers, policy advisors, infrastructure managers, and emergency managers) 

20 requirements with fundamental science to produce multi-hazard eruption scenarios for a high-

21 risk volcano. We apply this approach to the Auckland Volcanic Field (AVF) to develop a suite 

22 of scenarios (‘DEVORA Scenarios’) that cover the wide spectrum of credible expected 

23 eruption activity. Demand was driven by a desire from stakeholders for scenarios that are 

24 scientifically credible and relevant for disaster risk management purposes, including 

25 evacuation, welfare, recovery, and critical infrastructure disruption planning. Stakeholders 

26 were embedded throughout the scenario development process, most importantly at the 

27 scoping and design stage, and through multiple formal and informal review cycles. Balancing 

28 scientific credibility while ensuring the scenarios are relevant to stakeholders was a challenge 

29 that required considerable time by all parties. Importantly, the process of scenario 

30 development was just as useful as the final product: it facilitated open discourse on major 

31 scientific uncertainties and information gaps on AVF volcanism, hazards, and risk. This served 

32 two important ends: 1) it allowed scientists to communicate areas of uncertainty to other 

33 stakeholders such as emergency managers, and 2) it identified potential future research 

34 avenues with an obvious and tangible societal benefit. It is anticipated that the DEVORA 

35 Scenarios will serve as a foundation for studies exploring the societal ramifications of a future 

36 AVF eruption. The process we outline here can be followed to develop credible and relevant 

37 suites of eruption scenarios for disaster risk management purposes in other environments.

38

39 Keywords: Disaster risk reduction; stakeholder engagement; co-production of knowledge; 

40 event scenarios
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41 1. Introduction
42 Preparing for, responding to, and managing the recovery following a volcanic eruption is filled 

43 with uncertain and dynamic challenges. Stakeholders must grapple with the inherent technical 

44 complexity of volcanism, the potential impacts on society (direct and indirect), the complex 

45 responses of society to those risks, the needs of affected communities, and more (Newhall 

46 1982; Fiske 1984; Ronan et al. 2000; Fearnley 2013; Christie et al. 2015; Fearnley and Beaven 

47 2018; Bretton et al. 2018a, b; Donovan 2019). Emergency managers, government officials, 

48 community planners, politicians, and community leaders, and other stakeholders rely on 

49 volcanic risk information that is salient, credible, and legitimate to inform management of the 

50 risks (Peterson 1988; Aspinall et al. 2003; Marzocchi et al. 2012; Donovan et al. 2012; Leonard 

51 et al. 2014; Aitsi-Selmi et al. 2016; Beaven et al. 2017; Doyle and Paton 2017; Fearnley and 

52 Beaven 2018). Scholarly work on the science-practice boundary defines these concepts: 

53 Credibility is whether information is perceived to meet the standards of scientific plausibility 

54 and is technically adequate; Salience is whether the information is relevant to end-user needs 

55 (i.e. does it answer their questions?); Legitimacy is whether the process that has been followed 

56 has produced information where all relevant parties have been included, is unbiased, 

57 transparent, and may have required compromise (Cash et al. 2002; Clark et al. 2016; Fearnley 

58 and Beaven 2018). Therefore, it is necessary that information be carefully developed and 

59 communicated to those that must make policy, organisational, or operational decisions (e.g. 

60 when, who, and where to evacuate) before, during, and after volcanic eruptions. 

61

62 Scenario planning is recognised as one of the key approaches to integrating diverse 

63 information requirements for emergency response and recovery planning and preparation 

64 (Alexander 2000). Best practice scenario planning requires collaborative and interdisciplinary 

65 methods in order to integrate the diverse data types and methodological approaches (Bloom 

66 and Menefee 1994; Keough and Shanahan 2008). A collaborative and interdisciplinary 

67 approach facilitates dialogue between participants which builds institutional learning, improves 
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68 decision-making processes, and identifies new or emerging challenges that may arise during 

69 a disaster response or recovery by integrating multiple mental models (van der Heijden 1997; 

70 Chermack 2004; Keough and Shanahan 2008; Moats et al. 2008; Clark et al. 2016; Sword-

71 Daniels 2016). As a communication and collaborative research tool, scenarios and the 

72 scenario planning process help foster openness to different perspectives, and aid in 

73 understanding complexity (Chermack 2004; Doyle et al. 2011; Clark et al. 2016; Doyle and 

74 Paton 2017). From this perspective, scenario planning reduces the cost of knowledge transfer 

75 and allows for more effective and efficient decision-making (Chermack 2004). Thus, scenario 

76 planning is an effective device for considering the complex and dynamic risk environments 

77 volcanic eruptions present (Barclay et al. 2008; Hicks et al. 2014; Doyle et al. 2015). Eruption 

78 scenarios have previously been developed in a range of formats, such as event narratives 

79 (Johnston et al. 1997; Galderisi et al. 2011), scenarios of specific eruption phenomena 

80 (Macedonio et al. 2008), or integrated multi-hazard scenarios (Zuccaro et al. 2008). However, 

81 there are relatively few documented examples of interdisciplinary approaches for scenario 

82 development that incorporate diverse stakeholder requirements in volcanic risk environments 

83 (Hicks et al. 2014). 

84

85 In this contribution we describe the interdisciplinary approach undertaken to construct a suite 

86 of multi-hazard volcanic eruption scenarios (‘DEVORA Scenarios’). We outline a process that 

87 focusses on using credible science and user requirements as equally critical and 

88 complementary components of the scenario development process. The objective of taking this 

89 approach to developing the DEVORA Scenarios was to ensure their utility in a variety of 

90 disaster risk reduction activities related to the Auckland Volcanic Field (AVF). The scenario 

91 development process was driven by stakeholder requirements (e.g., evacuation planning, 

92 economic loss modelling) to ensure the outputs were as useful and useable as possible. In 

93 the next section we provide a brief overview of our study area: Auckland, New Zealand. We 

94 then discuss the interdisciplinary approach undertaken to construct multi-hazard eruption 

95 scenarios, focussing on decisions that were made throughout the process and the rationale 
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96 for making them, and stressing that this approach is transferable to other volcanic areas. 

97 Finally, we discuss the benefits and challenges associated with the approach taken in this 

98 study and areas that require further consideration.

99 2. Background: Auckland, New Zealand

100 2.1 Volcanology of the Auckland Volcanic Field
101 The city of Auckland, New Zealand, is built upon the Auckland Volcanic Field (AVF) (Figure 

102 1). The AVF is a 360 km2 intraplate volcanic field that has been active for approximately 

103 200,000 years (Searle 1964; Kermode 1992; Allen and Smith 1994; Hayward et al. 2011; 

104 Runge et al. 2015; Leonard et al. 2017). Most of the 53 identified eruptions within the AVF 

105 have dense rock equivalent (DRE) volumes between 0.001 and 0.03 km3; only two eruptions 

106 have eruptive volumes > 0.1 km3 (Kereszturi et al. 2013; Leonard et al. 2017). The most recent, 

107 and largest (0.7 km3 DRE), eruption within the AVF was ca. 550 yr. BP at Rangitoto Island 

108 (Needham et al. 2011; Kereszturi et al. 2013; Leonard et al. 2017). The geologic record 

109 indicates that AVF eruptions can be 'wet' (phreatomagmatic), 'dry' (magmatic), or both, and 

110 locally variable environmental conditions play an important role in their occurrence (Allen and 

111 Smith 1994; Agustín-Flores et al. 2014, 2015a; Kereszturi et al. 2014a). This has implications 

112 for the types of volcanic hazards that may occur during a future AVF eruption (Allen and Smith 

113 1994; Németh et al. 2012; Kereszturi et al. 2014a). The location or general vicinity of the next 

114 AVF vent is unknown (Searle 1964; Bebbington and Cronin 2011; Leonard et al. 2017). 

115 Consequently, anywhere within the 360 km2 area field is treated as a potential site for the next 

116 AVF eruption from a risk management perspective (Lindsay et al. 2010; Leonard et al. 2017). 

117 Thus, foreseeing and planning for the potential impacts from a future AVF eruption is complex. 

118
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119
120 Figure 1: A) Location of New Zealand, B) Location of the Auckland and the AVF, C) 
121 Distribution of past volcanic centres, eruptive products, and approximate extent of the AVF 
122 (Kermode 1992; Hayward et al. 2011; Kereszturi et al. 2014a; Runge et al. 2015), D) 
123 Geographic locations within Auckland. Roads used as a proxy for population density.

124 2.2 Socio-economic background of Auckland, New Zealand
125 Auckland currently has a permanent population of 1.7 million (most within central Auckland: 

126 Figure 1d), approximately one third of the total New Zealand population. Population growth for 

127 2017 was 2.6%, making it one of New Zealand’s fastest growing population centres (Stats NZ 

128 Tatauranga Aotearoa 2017a). Auckland is a key economic centre, contributing 37.5% to New 

129 Zealand’s Gross Domestic Product (GDP) (Stats NZ Tatauranga Aotearoa 2017b) and is the 

130 base for several facilities of national significance. For example, Auckland Airport, located in 
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131 South Auckland, has approximately 500,000 international passenger arrivals during each peak 

132 month (December and January), and 75% of the total international passenger arrivals into 

133 New Zealand enter the country through Auckland Airport (Auckland Airport 2018a, b). In 2017 

134 alone, approximately 20.5 million passengers (international and domestic), NZ$6.8 billion of 

135 exports (~12% of total New Zealand exports), and NZ$11.8 billion of imports (~21% of total 

136 New Zealand imports) passed through the airport (Auckland Airport 2018a, b; Stats NZ 

137 Tatauranga Aotearoa 2018). Auckland seaport located in Waitematā Harbour had NZ$6 billion 

138 of exports (~11% of total New Zealand exports) and NZ$22.8 billion imports (~40% of total 

139 New Zealand imports) passed through it in 2017 (Stats NZ Tatauranga Aotearoa 2018). The 

140 national electricity grid goes through Auckland with limited redundancy. If electricity 

141 transmission is disrupted in Auckland, no electricity with be transmitted north of Auckland 

142 (Deligne et al. 2017a). Thus, disruption to Auckland's urban functionality can be nationally 

143 significant. 

144

145 2.3 Managing and assessing volcanic risk in Auckland
146 Strong science-practitioner-policy relationships are critical for effective disaster risk 

147 governance (Paton et al. 1998), which is a key priority area of the Sendai Framework (UNISDR 

148 2015; Aitsi-Selmi et al. 2016). There has been a strong emphasis from the entire New Zealand 

149 civil defence and emergency management sector to facilitate strong linkages between 

150 science, practice, and policy, and this has been acknowledged as one of New Zealand’s 

151 strengths in its strategy towards disaster resilience (Ministry of Civil Defence and Emergency 

152 Management 2019). In part, this has been achieved through strategically developed research 

153 platforms and programmes, such as Determining Volcanic Risk in Auckland (DEVORA), that 

154 embed scientists, practitioners, and policy makers within the research and knowledge 

155 development process. As a result, these research programmes have fostered close 

156 stakeholder engagement and co-production as a key feature of attempting to ensure natural 
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157 hazards and risk research in New Zealand is as relevant and legitimate as possible, as well 

158 as credible (Beaven et al. 2017; Thompson et al. 2017). 

159

160 Given the high degree of risk associated with future AVF volcanism, there is demand from 

161 local and national emergency management officials for information products that can inform 

162 disaster risk reduction planning (Deligne et al. 2015a, b). Research studies, policy and practice 

163 documents and engagement activities have identified a range of information that stakeholders 

164 have requested, generally within the following categories: potential direct impacts (e.g., 

165 number of damaged buildings or evacuated people, infrastructure loss of service: Blake et al. 

166 2017; Deligne et al. 2017b), potential indirect eruption impacts (e.g., national implications on 

167 the flow of imports and exports: McDonald et al. 2017), potential warning time (e.g., evacuation 

168 decision-making: Tomsen et al. 2014) and potential post-eruption environment (e.g., clean-up 

169 and recovery requirements: Johnston et al. 1997; Brunsdon and Park 2009; Lindsay et al. 

170 2010; Blake et al. 2017; Deligne et al. 2017a; Hayes et al. 2017). This information provides 

171 useful awareness around the potential scale of disaster and context within which decisions 

172 will need to be made.

173
174 Scenarios are a proven method for deriving disaster risk information for AVF-specific disaster 

175 risk management planning (Brunsdon and Park 2009; Lindsay et al. 2010; Daly and Johnston 

176 2015). In 1997, Johnston et al. (1997) developed a suite of mostly narrative scenarios of 

177 expected AVF volcanism for the Auckland Regional Council (ARC). This facilitated exploration 

178 of impacts, culminating in a risk assessment for Auckland critical infrastructure (Daly and 

179 Johnston 2015). The utilisation of scenarios has been a useful communication tool to envision 

180 the potential impacts from a future AVF eruption. In 2008, the transdisciplinary Determining 

181 Volcanic Risk in Auckland (DEVORA) research programme was established as a collective 

182 effort by Auckland Council (local/regional government body), the Earthquake Commission 

183 (national government insurance agency), GNS Science (national geological survey), 

184 numerous New Zealand-based universities, and other partner agencies to improve the 
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185 understanding and assessment of volcanic hazard and risk in the Auckland metropolitan area 

186 from AVF and distal eruptions, and to provide a strategy and rationale for appropriate risk 

187 mitigation (Deligne et al. 2015a). This applied research programme has since promoted 

188 integrated multidisciplinary research from geological studies through to volcanic hazards, 

189 vulnerability, risk assessments, and development of risk reduction and resilience planning and 

190 practices. The close relationship between the science and practitioner communities has led to 

191 enhanced understanding of the information requirements of each group. There has been 

192 considerable demand from stakeholders for scenarios that can provide insights into issues 

193 such as potential infrastructure outages, expected economic losses, and evacuation decision-

194 making (Deligne et al. 2017a; Blake et al. 2017). The Johnston et al. (1997) scenarios provided 

195 a useful starting point, but they do not contain the necessary spatio-temporal hazard footprint 

196 and hazard intensity information required by contemporary stakeholders. Further, there has 

197 been considerable knowledge gained from the DEVORA research programme allowing 

198 enhanced insights into the hazards and impacts of a future AVF eruption. Therefore, it was 

199 necessary to develop a new suite of scenarios that could meet stakeholder needs and 

200 incorporate new knowledge. 

201
202 Following the Johnston et al. (1997) ARC AVF scenario suite, a scenario was developed for 

203 an all-of-government emergency management exercise called ‘Exercise Ruaumoko’, which 

204 was designed to test capacity responding to AVF unrest in the lead up to an eruption 

205 (Brunsdon and Park 2009; Lindsay et al. 2010). ‘Exercise Ruaumoko’ was subsequently used 

206 as a basis for an educational simulation and role-play tool to teach postgraduate students 

207 scientific and emergency management concepts (Dohaney et al. 2015; Fitzgerald et al. 2016). 

208 This scenario was further developed to explore the impacts of AVF volcanism on Auckland’s 

209 infrastructure (Deligne et al. 2015b). The Māngere Bridge has been used to explore impacts 

210 on critical infrastructure, mitigation and response requirements, and potential physical and 

211 economic losses in the AVF (Blake et al. 2017; Deligne et al. 2017a, b; Hayes et al. 2017; 

212 McDonald et al. 2017). However, a noted limitation from these works was the availability, and 
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213 thus use, of only one eruption scenario. The geological record indicates that collectively, 

214 previous AVF eruptions exhibit a wide range of potential eruption dynamics (e.g., style, 

215 hazards, vent location, volume). Therefore, there was a need for the development of a more 

216 comprehensive suite of eruption scenarios representative of AVF volcanism. 

217 3. Scenario planning and development
218 Due to different contextual environments (e.g. cultural norms, project objectives) there are a 

219 variety of models and variations on the scenario planning process (e.g. Schoemaker 1995; 

220 Schwartz 1996; Wilson and Ralston 2006; Avin 2007), but most have common elements 

221 (Keough and Shanahan 2008; Moats et al. 2008; Amer et al. 2013). Broadly, these elements 

222 include: 1) developing an environment conducive for scenario planning, 2) conducting analysis 

223 to build a picture of the scenario planning requirements, 3) creating scenarios, and 4) using 

224 the scenarios.

225

226 Developing an environment conducive for scenario planning includes consideration of issues 

227 such recognising the need for scenario planning, outlining project objectives and scope, and 

228 identifying relevant stakeholders (Keough and Shanahan 2008; Moats et al. 2008). 

229 Recognising the need for scenario planning requires an organisational culture that is 

230 conducive to the participatory requirements of scenario planning, but some organisations may 

231 not be well equipped to make use of scenario planning (Keough and Shanahan 2008). 

232 Determining project scope/objectives and identifying relevant stakeholders that must be 

233 included is critical to ensure that scenarios are useful for their intended purpose. Best practice 

234 suggests that teams should be made up of a wide variety of participants with differing 

235 intellectual and cultural backgrounds to ensure that the scenarios cover necessary breadth 

236 and detail (Schwartz 1996; Davies et al. 2005; Keough and Shanahan 2008). 

237

238 A coherent picture of the scenario planning requirements must then be built. This requires: 1) 

239 collecting necessary data, 2) identifying and conducting detailed research on critical drivers 
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240 and key issues, 3) analysing issues of uncertainty/variability and 4) obtaining an envelope of 

241 uncertainty that the scenarios must cover, which will inform how many scenarios must be 

242 developed. Once this information is obtained, creation of the scenarios can commence by the 

243 scenario building team (Keough and Shanahan 2008). The specific approach and tools used 

244 to develop the scenarios will depend on the context of the work being conducted (Bloom and 

245 Menefee 1994). Finally, the scenarios are then used to evaluate necessary planning 

246 requirements. This conceptual approach to scenario planning is used in this work to develop 

247 the DEVORA Scenarios. 

248

249 3.1 Developing volcanic eruption scenarios for the AVF
250 Two basic principles underpinned our scenario development process: 1) using robust scientific 

251 evidence, and 2) ensuring streamlined compatibility with current and future applications (e.g., 

252 impact assessment). To adhere to these principles, we conducted an in-depth literature review 

253 of AVF research, and we sought regular input through formal consultation and informal 

254 meetings from diverse stakeholders throughout the scenario development process to help 

255 structure and inform key aspects of the scenarios (described in Section 3.1.4; Figure 2). Here, 

256 stakeholders were anyone involved with the scenario development process including: physical 

257 volcanologists, geophysicists, geochemists, disaster risk researchers, policy advisors, 

258 geotechnical engineers, infrastructure managers, and emergency management officials. 

259 Stakeholders were all actively involved with the DEVORA research programme, which allowed 

260 us to draw upon existing relationships to facilitate engagement during the scenario 

261 development process. During the meetings it became clear that emergency management 

262 stakeholders were primarily concerned with likely societal impacts and potential management 

263 requirements rather than the intricacies of the volcanic activity. Practitioner and policy experts’ 

264 specific interests were diverse but focused much on ensuring information was relevant, 

265 including: how long it would take to evacuate different sectors of the city, how to manage re-

266 entry into evacuated areas, and what the post-eruption environment would look like (e.g., 
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267 damage, economic losses). In contrast, the volcanologists were concerned that scenarios be 

268 scientifically credible, accurately reflecting the future potential eruptive behaviour of the AVF, 

269 and that they managed uncertainty through use of appropriate analogues, geological 

270 information, and expert judgement. This classic risk assessment stakeholder tension led us to 

271 conclude that undertaking the collaborative process would be important to facilitate 

272 understanding between each group. 

273
274 In the following sections we outline the approach taken to develop the DEVORA Scenarios. 

275

276
277 Figure 2: The DEVORA Scenarios development process. 
278

279 3.1.1 Format of the scenarios
280 Volcanic impacts are rarely static in space and time. Volcanic processes can produce a variety 

281 of hazardous phenomena at different times before, during, and after an eruption. Responding 

282 organisations and communities can undertake measures before, during, or after an eruption 

283 that reduce or exacerbate the resulting impacts (Tilling 1989; Horwell and Baxter 2006; Wilson 
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284 et al. 2012; Pierson et al. 2014; Hayes et al. 2015). For eruption scenarios to be able to convey 

285 realistic impacts, it is necessary to consider the time and space variations in the hazardous 

286 phenomena (Zuccaro and De Gregorio 2013). To do so, eruption scenarios must be time-

287 sequenced with evolving activity as the scenario unfolds, as opposed to a cumulative snapshot 

288 of the final distribution of volcanic hazards. Therefore, the DEVORA Scenarios were produced 

289 to be time-sequenced as this allows for future analysis of evolving impacts through each 

290 scenario. 

291
292 Due to the importance of spatio-temporal sequencing, and in consultation with stakeholders, 

293 we decided that the most flexible approach would be to develop a collection of shapefiles of 

294 each hazard that occurs through the eruption sequence, as this would allow future researchers 

295 to assess the cascading impacts that would occur from the eruption scenarios. Qualitative 

296 narratives that broadly describe the major events of the eruption scenario would accompany 

297 the shapefiles. The qualitative narrative was for communication purposes to allow those 

298 utilising the scenarios to understand the major events that were occurring in the eruption 

299 scenarios. 

300 3.1.2 Number of scenarios 
301 Agreeing on the number of scenarios to develop is an important part of the scenario 

302 development process as it contributes to the balance between credibility, salience, and 

303 legitimacy. A single scenario is simpler to communicate, but it will come at the expense of 

304 legitimacy: It may present a biased indication of volcanism, due to not incorporating potential 

305 uncertainty, and/or if some viewpoints are not incorporated into the scenarios (e.g., Girod et 

306 al. 2009). However, it is impractical to consider every different combination of events that could 

307 occur in the future. A large number of scenarios is also likely to come at the expense of 

308 relevance to stakeholders as they will take a substantial amount of time to develop and too 

309 much choice can be overwhelming (Girod et al. 2009). Thus, it is necessary to strike a balance 
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310 between incorporating variety into the scenario suite (to serve the needs of end-users) and 

311 not developing too many scenarios. 

312
313 Our intention was to cover a number of scenarios that would present the most representative 

314 variety of potential societal impacts from AVF volcanism, rather than fully categorise all 

315 potential dynamics of future AVF eruptions. We considered that focussing on the potential 

316 variety of societal impacts would provide scenarios that were relevant and legitimate to 

317 stakeholders, whilst still being flexible enough to include the necessary complexity to maintain 

318 credibility. The AVF can produce phreatomagmatic, magmatic explosive, and magmatic 

319 effusive styles of eruption (Allen and Smith 1994), and the eruption style is greatly influenced 

320 by local environmental conditions (Kereszturi et al. 2014a). Each style produces multiple 

321 hazardous phenomena, which in turn produce different societal impacts. For example, a fine 

322 coating of volcanic tephra or lava on the same road necessitates different mitigation and 

323 management requirements. In addition, eruptions within the AVF span several orders of 

324 magnitude in erupted volume, which likely affects the duration and intensity of resultant 

325 volcanic hazards (Searle 1964; Kermode 1992; Allen and Smith 1994; Kereszturi et al. 2013, 

326 2014a). Therefore, to produce a credible representation of AVF volcanism it was necessary to 

327 develop a suite of different multi-hazard eruption scenarios in a variety of locations throughout 

328 the AVF. 

329
330 To manage the balance required, we held a brainstorming meeting in 2014 involving 

331 volcanology and volcanic impact researchers. This initial brainstorming meeting was attended 

332 by only researchers to allow for a consistent project to be presented to additional stakeholders 

333 for their consideration and feedback. At this meeting it was concluded that vent location would 

334 likely be a major influence on the type of volcanism and the resulting societal consequences, 

335 particularly at locations where strategically important infrastructure nodes were located. 

336 Scenario vent location, therefore, was an important consideration when deciding on the 

337 number of scenarios. For practical purposes, vent opening location probability is considered 
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338 uniform across the AVF (Sandri et al. 2012; Le Corvec et al. 2013). Given that there was no 

339 evidence to suggest a precise location of the next AVF eruption, geological considerations 

340 and locations thought to be of strategic importance for Auckland’s urban functionality were 

341 used to justify scenario locations. The criteria we used to determine locations for the DEVORA 

342 Scenarios were: 

343 ● each location must fall within the Runge et al. (2015) "tight" elliptical AVF boundary;

344 ● the locations must be geographical spread across Auckland;

345 ● the locations collectively must allow for the exploration of different eruption styles and 

346 hazards likely in a future AVF eruption;

347 ● the locations collectively must allow for the exploration of impacts to different exposed 

348 assets; and

349 ● scenario vents are not at the site of a known existing AVF vent.

350

351 To facilitate legitimacy in the selection of vent locations, the precise location of each scenario 

352 was determined by the group of researchers through discussion and consensus. Through the 

353 ensuing discussion we settled on the location of eight scenarios1 that would cover the 

354 requirements listed above (Figure 3; Table 1). Although an argument could be made for 

355 additional scenarios with vents occurring in alternative locations, we felt that these eight 

356 locations would provide sufficient diversity and indication of the spectrum of impacts whilst 

357 minimising overlap between scenarios and the potential to overwhelm stakeholders. 

1 Note: Scenario C: Māngere Bridge was developed earlier than the other seven scenarios, and as a 
result its vent location was chosen following a slightly different approach (see Fitzgerald et al. 2016; 
Deligne et al. 2017a; Table 1).
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358
359 Figure 3: Locations and names of the DEVORA Scenarios. Roads included as a proxy for 
360 population density. AVF extent from Runge et al. (2015).
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361 Table 1: The DEVORA Scenarios and reasons for selecting them.

Scenario name Reasoning

Scenario A: 
Auckland Airport

● Proximity to Auckland Airport (nationally significant infrastructure)
● Environmental conditions conducive to phreatomagmatic eruptive 

activity (Kereszturi et al. 2014a, 2017).

Scenario B: 
Ōtāhuhu

● Proximity to an area with a high density of critical infrastructure
● Environmental conditions conducive to phreatomagmatic activity but 

could also allow for transition to magmatic eruptive activity 
(Kereszturi et al. 2014a, 2017).

Scenario C: 
Māngere Bridge

● Exercise Ruaumoko eruption location. This was a highly socialised 
scenario location because it was used for an all-of-nation civil 
defence exercise (Lindsay et al. 2010). 

Criteria given to ‘the volcano’ in 2008 (Deligne et al. 2015b):
● Eruption should start in shallow water to consider range of possible 

eruption types.
● Eruption site should be in an area of mixed socioeconomic groups;
● Eruption site could not force closure of State Highway 1 nor 

Northwestern Motorway given expected response actions.

Scenario D: Mt. 
Eden Suburb

● Eruption site likely to result in largest evacuation population.
● Eruption site located in a residential area.
● Environmental conditions conducive to magmatic eruption styles 

(Kereszturi et al. 2014a, 2017).

Scenario E: 
Waitematā Port

● Proximity to Waitematā Port operations.
● Environmental conditions conducive to phreatomagmatic eruptive 

activity (Kereszturi et al. 2014a, 2017).

Scenario F: 
Birkenhead

● Proximity to Auckland Harbour Bridge.
● On the North Shore.
● Environmental conditions conducive to hybrid eruption style 

(Kereszturi et al. 2014a, 2017).

Scenario G: 
Rangitoto Channel

● Proximity to shipping channel.
● Environmental conditions most likely to allow for Surtseyan style 

eruptive activity (Agustín-Flores et al. 2015b).

Scenario H: 
Rangitoto Island

● Proximity to most recent site of an AVF eruption, potentially important 
to consider event clustering.

● Environmental conditions conducive to hybrid eruption style 
(Kereszturi et al. 2014a, 2017).

362
363 In addition to varying the vent location, we also varied other components in the scenarios that 

364 would likely exert a substantial control on the societal impacts:

365 ● Volcanic eruption styles and hazards.

366 ● Duration of volcanic unrest activity.

367 ● Duration of volcanic eruption sequence.

368 ● Volume of erupted deposits.

369 ● Hazard modelling parameters.
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370 3.1.3 Scenario modelling
371 Scenario modelling (i.e. natural process, hazard and impact) is a fundamental aspect of 

372 scenario development as it facilitates transparency. Scenario modelling requires identification 

373 of appropriate modelling approaches and their respective information requirements, data 

374 gathering, and application. We present the steps undertaken for modelling the DEVORA 

375 Scenarios in the subsections below.

376

377 3.1.3.1 Step 1: Reviewing data availability
378 There is no historical or instrumental information on unrest or eruption in the AVF. The most 

379 recent AVF eruption predates the written historical record and instrumental measurements in 

380 New Zealand (Needham et al. 2011). Although Māori (indigenous people of New Zealand) 

381 would likely have witnessed the eruption, no known oral histories have been shared that refer 

382 to this event (Lowe et al. 2002). Therefore, we were reliant upon local geological information 

383 and international analogues to develop the DEVORA Scenarios.

384 3.1.3.2 Step 2: Reviewing the expected range of volcanic activity
385 In addition to vent location, there are four aspects of volcanism we considered important to 

386 characterise to ensure that diverse impacts would manifest in the scenario suite: 1) eruption 

387 styles and hazards, 2) precursory activity, 3) eruption duration, and 4) bulk erupted volume. 

388 Each of these aspects were reviewed for the AVF and relevant analogous eruptions from 

389 around the world. An overview of our analysis and how this information informed the scenario 

390 development is presented below.

391 3.1.3.2.1 Eruption styles and hazards
392 We used geological studies to inform the eruption styles and hazards and analogue eruptions 

393 for modelling parameters and unobservable aspects of the scenarios (e.g., unrest activity). 

394 The conceptual framework for how volcanic hazards were considered in scenario development 

395 is presented in Figure 4. The following criteria was used to define the eruption styles and 

396 hazards for the DEVORA Scenarios:
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397 ● Since >80 % of AVF eruptions have evidence of phreatomagmatic phases, six of the 

398 eight DEVORA scenarios include a phreatomagmatic phase.

399 ● One scenario has no phreatomagmatic phase and is located in an area of low 

400 phreatomagmatic susceptibility based on Figure 10 of Kereszturi et al. (2014a).

401 ● At least one scenario only displays phreatomagmatic activity and is located in an area 

402 of relatively high phreatomagmatic susceptibility based on Figure 10 of Kereszturi et 

403 al. (2014a).

404 ● At least one scenario begins magmatic before transitioning to phreatomagmatic.

405 ● For completeness, there is one Surtseyan eruption and this is located in an area of 

406 similar environmental conditions as the Surtseyan North Head eruption, as described 

407 by Agustín-Flores et al. (2015b).

408
409

410
411 Figure 4: Conceptual diagram of the AVF eruption hazardscape (Allen and Smith 1994; De 
412 Lange and Healy 2001; Magill and Blong 2005; Hayward et al. 2011). Note: * indicates hazards 
413 that have been considered in the DEVORA Scenarios.
414
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415 3.1.3.2.2 Detection of volcanic unrest
416 Knowing when a volcano may erupt and characterising volcanic unrest is a key part of volcanic 

417 hazard mitigation, as that information can give authorities time to implement contingency plans 

418 (Tilling 1989; Newhall and Punongbayan 1996). In areas of distributed volcanism there is an 

419 additional component to this as it is also necessary to know where an eruption may occur, 

420 which means identifying unrest is even more critical to managing risk. Magma ascent at 

421 volcanoes can be detected by changes in three indicator types of precursory activity: 

422 seismicity, deformation, and volcanic gas emissions (Sparks et al. 2012). There is very little 

423 record of these phenomena within the geologic record, and so there is a heavy reliance on the 

424 instrumental record or analogues. Thus, identifying the potential characteristics of each, and 

425 local capacity to monitor each, is an important element to consider in scenario development. 

426
427 Seismology is one of the most useful tools for monitoring volcanoes because of the high 

428 incidence of seismic activity associated with volcanic eruptions (Pallister and McNutt 2015). It 

429 is expected that seismic precursory activity currently provides the best basis for detecting 

430 magma ascent in the AVF (Sherburn et al. 2007; Lindsay et al. 2010). GeoNet’s seismic 

431 network automatically locates seismic activity that triggers at least 10 seismic stations, whilst 

432 gas and deformation detection require human oversight (Ashenden et al. 2011; Miller and Jolly 

433 2014; Deligne et al. 2019). However, we acknowledge that interpretation of earthquake 

434 locations in a volcanological sense also requires considerable human oversight. Thus, for the 

435 purposes of the DEVORA Scenarios effort was focussed on developing credible and 

436 detectable seismic unrest sequences. The DEVORA Scenarios did not feature tectonic 

437 swarms unrelated to volcanic processes (these have not happened in Auckland in the 

438 instrumental record). They also do not include unrest sequences that do not result in an 

439 eruption, although any of the scenario unrest phases could be used for this purpose.

440
441 Ascent of magma (from ~80-100 km depth: Horspool et al. 2006) to the surface in the AVF is 

442 likely to be relatively quick (0.01–6 m s-1), suggesting possible ascent durations from source 

443 to surface of four hours to 116 days (Blake et al. 2006; Sherburn et al. 2007; Brenna et al. 
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444 2018). Assuming a constant ascent rate and first detection at 30 ±10 km depth (assumed point 

445 where earthquakes become detectable: Sherburn et al. 2007) gives potential warning times of 

446 one hour to 46 days. Ascent rate from the source to the surface is unlikely to be constant, and 

447 so the lead time is likely to lie between these values.

448
449 The following criteria were used to develop unrest sequences: 

450 ● Detected earthquakes occur at ≤ 30 ±10 km depth that become shallower over time.

451 ● At least one scenario includes multiple intrusions that fail to reach the surface,

452 resulting in a long-lasting but sporadic period of unrest. The purpose of this is to reflect 

453 the limited knowledge regarding precursory activity within the AVF.

454 ● Unrest scenarios should fit within the maximum/minimum bounds established in the 

455 literature for similar volcanoes.

456

457 3.1.3.2.3 Eruption duration
458 The duration of a volcanic eruption is important to consider as it can affect the duration of 

459 evacuation/exclusion zones that are in effect, infrastructure outages, and response and 

460 recovery decision-making. However, the duration of volcanic eruptions can vary considerably 

461 (Siebert et al. 2015). As the exploration of temporal components of AVF volcanic eruptions 

462 was a key requirement of the scenarios, a range of potential eruption durations for AVF 

463 volcanism were considered. We wanted scenarios occurring at different times of the year so 

464 that different wind fields would occur and so that different seasonal impacts could be explored 

465 in the future. It is difficult to predict the duration of eruptions, and a global review of all types 

466 of volcanism found that the duration can vary from less than one day to centuries (Siebert et 

467 al. 2015). To maintain transparency in the scenario development process, we used estimated 

468 volumes of previous AVF eruptions and approximate eruption rates from analogue eruptions 

469 to estimate potential eruption durations. Durations of eruptions comparable to those likely in 

470 the AVF yields average eruption rates across the entire eruption of 1 - 20 m3 s-1 (Machado et 

471 al. 1962; Thorarinsson et al. 1973; Scandone 1979; Self et al. 1980; Luhr et al. 1993; Blake et 
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472 al. 2006; Kereszturi et al. 2013; Schipper et al. 2015). As our intention was for variety, we 

473 selected eruption rates within this range would produce a variety of eruption durations from a 

474 few days up to one year. The exception to this eruption rate is Scenario C: Māngere Bridge, 

475 which included an exceptionally fast outpouring of lava towards the end of the scenario. 

476 3.1.3.2.4 Bulk erupted volume
477 Eruption volumes allow for the quantification of different hazardous eruptive processes (e.g., 

478 lava flows and tephra fall). Bulk eruption volume directly represents the volume of material at 

479 Earth’s surface, including pore space, meaning that it is a more useful measure of volume for 

480 our scenario development than dense rock equivalent (DRE).

481
482 Kereszturi et al. (2013)’s comprehensive estimate of minimum volumes of preserved AVF 

483 eruption products (excluding medial to distal tephra) was used to constrain the bulk erupted 

484 volumes used in the DEVORA Scenarios. Kereszturi et al. (2013) reported bulk eruptive 

485 volumes of between 3x10-4 km3 (Ash Hill) and 1.1 km3 (Rangitoto), with a median of 1x10-2 

486 km3. However, eruption dynamics are important to consider, as eruptions with a single 

487 phreatomagmatic phase have smaller bulk erupted volumes than those with both 

488 phreatomagmatic and magmatic phases (Kereszturi et al. 2014a). The omission of medial to 

489 distal tephra in the Kereszturi et al. (2013) volume estimates may lead to considerable 

490 underestimation of eruptive volumes, as more recent studies indicate medial to distal tephra 

491 could be a sizable contribution (Hopkins et al. 2017; Slabbert 2017).

492
493 To constrain the bulk erupted volumes for the DEVORA Scenarios, the following criteria were 

494 used:

495 ● Bulk eruptive volume should allow for a variety of eruptive hazards and hazard 

496 intensities to be produced across the entire scenario suite.

497 ● One eruption with a bulk erupted volume at the lower end of the range estimated for 

498 the AVF should be included.
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499 ● An eruption with >1 km3 bulk erupted volume should not be included because this is 

500 likely to be a relatively long-lived eruption (e.g., Rangitoto), which we deliberately 

501 exclude from this iteration of the scenarios.

502 3.1.3.3 Step 3: Scenario storyboard narratives
503 One of the considerations for the scenarios developed in this work was to include time-

504 sequenced events throughout each scenario (scenario narratives), as they are a common 

505 requirement of emergency managers (Alexander 2000; Moats et al. 2008; Doyle et al. 2015). 

506 This is because narratives are considered an effective communication device as they increase 

507 comprehension, interest, and engagement in science from non-experts (Dahlstrom 2014). We 

508 used bullet pointed descriptions of events through each eruption scenario to construct 

509 scenario narratives. We first focussed on describing major events in the scenarios, such as 

510 the start and end of major eruptive phases, and used this to guide detailed mapping of eruptive 

511 phenomena using analytical, empirical, or conceptual models. 

512 3.1.3.4 Step 4: Spatio-temporal hazard modelling
513 To appropriately characterise and model volcanic hazards for use in impact and risk 

514 assessments, it is necessary to have a sound understanding of appropriate hazard intensity 

515 metrics that are likely to be used. This was done by reviewing existing vulnerability/fragility 

516 functions and impact models to identify the required outputs from the hazard assessment. To 

517 ensure scenarios could be developed in a reasonable timeframe we used existing information, 

518 rather than develop new analytical models. Thus, we decided to characterise eruption hazards 

519 into three categories based on existing capabilities to model each hazard and obtain useful 

520 hazard intensity metrics: 

521 1. Hazards for which the spatial variation of hazard intensity is an important variable in 

522 determining impact

523 2. Hazards that will potentially exhibit mostly a binary relationship between hazard and 

524 impact (i.e. hazard exposure = complete destruction).
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525 3. Hazards that we acknowledge have the potential to occur during a future AVF eruption, 

526 but there is a lack of resources to accurately model and/or there is very little information 

527 of how impacts relate to the hazard. 

528
529 For hazards that fall within category one (Table 2), available impact models and fragility 

530 functions were reviewed to determine the most appropriate hazard intensity metrics to use 

531 (Jenkins et al. 2014; Wilson et al. 2014). The required hazard intensity metrics were then an 

532 important consideration when deciding on the analytical or empirical model(s) that would be 

533 used to model the hazard. Hazard models were excluded if they did not provide outputs in the 

534 form of the required hazard intensity metrics. When selecting models, we opted for those that 

535 were simple to implement computationally and did not require considerable customisation for 

536 them to work in the AVF. For category two hazards, the spatial extent would be a sufficient 

537 measure of hazard for our purposes, meaning that we focussed on characterising only the 

538 footprint of these hazards. For these hazards we focussed on hazard characterisation of AVF 

539 phenomena (e.g. spatial footprint of cones). For category three hazards, it was not possible to 

540 model the hazard. In these instances, qualitative descriptions were made, but we endeavoured 

541 to keep descriptions broad, such that if capacity to model the hazard becomes available in the 

542 future, they can seamlessly be added into the DEVORA Scenarios. 

543
544
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545 Table 2: Expected AVF hazards, the approach taken to characterise the hazards, and the 
546 scenarios each hazard appears in

Expected AVF 
hazards

Hazard 
characterisation 
used in DEVORA 
Scenarios

Approach used 
to model

Information used 
for modelling

Scenarios 
hazard 
appears in

Tephra fall Category 1: Deposit 
loading (kN m-2) and 
thickness (mm).

Tephra2 
(Bonadonna et al. 
2014).

Eruption 
parameters and 
climatological 
information.

A, B, C, D, 
E, F, G, H.

PDC Category 1: Deposit 
thickness (mm) and 
PDC dynamic 
pressure (kPa).

Energy cone 
(Palma 2013) and 
empirical 
relationships 
based on Brand 
et al. (2014).

Eruption 
parameters, Digital 
Elevation Model 
(DEM).

A, B, C, E, 
F, G, H.

Ballistics Category 1: Impact 
energy (Joules).

Ballista 
(Tsunematsu et 
al. 2016).

Eruption 
parameters.

A, B, D, E, 
F, G, H.

Earthquakes Category 1: 
Magnitude, depth, 
and horizontal 
location

Expert 
judgement.

Likely earthquake 
magnitudes, ascent 
rates, and 
detection depth.

A, B, C, D, 
E, F, G, H.

Tuff ring Category 2: Binary 
impact.

Empirical 
relationships.

Systematic 
collection of tuff 
ring morphometry 
in study area (Allen 
and Smith 1994; 
Kereszturi et al. 
2013).

A, B, C, E, 
F, H.

Maar crater Category 2: Binary 
impact.

Empirical 
relationships.

Systematic 
collection of maar 
crater 
morphometry in 
study area (Allen 
and Smith 1994; 
Kereszturi et al. 
2013).

A, B, C, E, 
F, H.

Volcanic cone 
(scoria, tuff)

Category 2: Binary 
impact.

Empirical 
relationships.

Systematic 
collection of cone 
morphometry in 
study area (Allen 
and Smith 1994; 
Kereszturi et al. 
2013).

B, C, D, F, 
G, H.

Lava flow Category 2: Binary 
impact.

Expert 
judgement.

Systematic 
collection of lava 
volume (Kereszturi 
et al. 2013), DEM.

B, C, D, F, 
G.

Volcanic gas Category 3: Not Not modelled - N/A. Qualitative 
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emission modelled - expected 
future development.

expected future 
development.

description 
only in 
scenarios.

Lava ocean entry 
hazards (e.g., 
vaze, littoral 
explosions, lava 
front collapse 
causing large 
waves)

Category 3: Not 
modelled - potential 
future development.

Not modelled - 
potential future 
development.

N/A. Qualitative 
description 
only H.

Small 
tsunami 
described in 
C.

Shockwave Category 3: not 
modelled - potential 
future development.

Not modelled - 
potential future 
development.

N/A. Does not 
feature in 
any 
scenario.

Explosion-
initiated tsunami

Category 3: Not 
modelled - potential 
future development.

Not modelled - 
potential future 
development.

N/A. Not included 
in the 
scenario 
suite.

547
548 As it was our objective to produce multi-hazard scenarios, it was necessary to consider the 

549 effects each hazard might have on other hazardous processes. However, existing ‘out of the 

550 box’ hazard models often only represent a single eruption hazard (e.g., just tephra fall). Thus, 

551 it can be difficult to integrate a variety of volcanic hazard models to ensure the collective 

552 outputs make logical sense. Thus, throughout the modelling process the implications that each 

553 model output would have on other elements of the scenario had to be considered. For 

554 example, our approach to lava flow modelling relied upon topography, which could potentially 

555 change during an eruption through the construction of an edifice and/or development of a maar 

556 crater. To overcome this, time-sequenced maps were constructed that displayed the eruptive 

557 products and features of the eruption scenario to inform where lava would possibly flow. 

558 Therefore, lava flow modelling had to be undertaken following modelling of all other processes 

559 at each time step.

560
561 One particularly unique feature of the AVF is the existence of a major urban development built 

562 upon it. This yields the question of whether the built environment could influence the spatial 

563 variability of hazards and their intensities (e.g., PDC, lava flow: Kereszturi et al. 2014b; 

564 Charbonnier et al. 2018; Tsang et al. in review). Some authors have highlighted this possibility 
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565 for PDC (Gurioli et al. 2007; Zanella et al. 2007; Doronzo and Dellino 2011, 2014; Jenkins et 

566 al. 2013; Charbonnier et al. 2018). However, as yet, there is no known tool calibrated for the 

567 AVF, and very little practical advice available on how such modelling could be conducted. 

568 Therefore, we chose to ignore such effects, acknowledging it as a limitation to the approach 

569 taken. 

570 3.1.3.5 Step 5: Development of scenario narratives
571 Scenario narratives in many disciplines are useful for analysing impact, vulnerability, and risk, 

572 and communicating complex processes that are representative of potential hazardous events 

573 (Ghanadan and Koomey 2005; Hallegatte 2009; Rounsevell and Metzger 2010; Kriegler et al. 

574 2012; Birkmann et al. 2015). From this perspective, the scenario narratives were written to be 

575 representative of the eruption scenario. The intention here was not for high precision and 

576 detailed rationale for each event that happens in a given scenario, but rather a written 

577 qualitative description of relevant physical processes that were occurring. Scenario narratives 

578 were presented in conjunction with cumulative eruptive product maps that provided a visual 

579 aid as to where different eruptive products were spatially located at specific moments 

580 throughout the scenario timeline. Cumulative eruptive product maps were produced by spatial 

581 modelling of different volcanic processes.

582 3.1.4 Scenario review process
583 Our two main criteria for the DEVORA Scenarios were that the scenarios be scientifically 

584 credible and usable. Therefore, to ensure that both of these criteria were met, we undertook 

585 regular review throughout the scenario development process, outlined in the subsections 

586 below.

587 3.1.4.1 Workshop of draft scenarios
588 A workshop in November 2016 guided the development of an early draft of the eruption 

589 scenarios. This workshop included 23 participates made up of volcanologists, disaster risk 

590 researchers, policy advisors, geotechnical engineers, and emergency management hazard, 
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591 risk, and resilience advisors. The workshop helped refine scenario requirements to ensure 

592 they would meet stakeholder needs and to maintain scientific credibility of the scenarios. 

593 Workshop participants were placed into seven groups that included at least one volcanologist, 

594 one risk specialist, and one emergency management official. Each group were given material 

595 related to one of the scenarios, excluding Scenario C: Māngere Bridge as this scenario was 

596 already complete by this point (Deligne et al. 2017a). Participants worked together to answer 

597 a variety of questions on their assigned scenario. Questions related to the types of eruptive 

598 phenomena that occurred during the scenario and whether the scenario would likely yield 

599 useful insights for volcanic impact assessments. Next, a discussion involving all workshop 

600 participants facilitated by JLH explored ways the scenarios could be improved. The discussion 

601 considered likelihood of eruption type and hazards for each scenario, incorporation of 

602 uncertainty associated with seismic unrest (e.g., credible detection depth and magnitude), 

603 credible worst-case eruption durations for the AVF and potential lulls in activity, increased 

604 transparency on selection of eruption parameters, and the potential for eruption style 

605 transitions and how they would manifest. The final stage of the workshop allowed all 

606 participants to add any additional comments to any of the other scenarios using post-it notes. 

607 A major point that emerged from the workshop included a desire from workshop attendees for 

608 more variability between scenarios, particularly for precursory seismic unrest so that the 

609 scenarios could be used to test evacuation decision-making. There was also considerable 

610 discussion around future research requirements to be able to build on the scenarios in the 

611 future. For example, there was discussion of the available hazard models for different volcanic 

612 hazards, their limitations for use in the AVF, and the need to further develop modelling 

613 capabilities for some volcanic hazards, particularly PDC and lava flow. 

614 3.1.4.2 Informal meetings
615 Throughout the scenario development process there were meetings with stakeholders likely 

616 to utilise the scenarios. These included Auckland Emergency Management officials and 

617 researchers from disciplines such as transport engineering, land use planning, and economic 
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618 loss modelling. The purpose of these meetings was to expedite collaboration and to ensure 

619 that the scenarios being developed would be useful for a variety of applications. Specific 

620 feedback on the scenarios during these meetings was not actively sought, but conversations 

621 covered limitations of the science behind the scenarios and the intended timeframes of work. 

622 Despite the informal nature of these meetings, they were integral to socialising the scenarios 

623 beyond the volcanic hazard community and ensuring wide stakeholder buy-in.

624 3.1.4.3 Formal review elicitation
625 Due to the many components in a credible multi-hazard volcanic eruption scenario, no single 

626 individual had expertise spanning the full range of the DEVORA eruption scenarios. Thus, all 

627 researchers affiliated with DEVORA (past and present) were invited to review the scenarios 

628 or the parts of the scenarios that fell within their area of expertise. To ensure that reasonable 

629 assumptions and appropriate past work were considered in the development of the DEVORA 

630 Scenarios, we particularly sought out those that had expertise across the following key areas:

631 ● Monogenetic volcanic processes

632 ● AVF geophysics

633 ● AVF volcanic hazards

634 ● AVF geochemistry

635
636 We undertook two rounds of the review. The first round was open to all members of the 

637 DEVORA community, and the second round was open to those who had provided reviews in 

638 the first round. The scenarios were then revised for a final time to reflect feedback received 

639 from the detailed review process and published in a scientific report (Hayes et al. 2018). 

640 4. The DEVORA Scenarios
641 The DEVORA Scenarios have been comprehensively outlined in a technical report (Hayes et 

642 al. 2018), which included rationale, modelling, assumptions, scenario narratives at a daily to 

643 monthly breakdown, and eruptive products maps for each scenario. Scenario C: Māngere 

644 Bridge was developed at an earlier stage relative to the other seven scenarios and is 
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645 discussed elsewhere (Deligne et al. 2015b, 2017a; Fitzgerald et al. 2016). The DEVORA 

646 Scenarios have associated shapefiles for each hazardous process that was modelled and are 

647 time-sequenced. An overview of the eruptive products produced during each scenario is 

648 presented in Figure 5 (proximal eruptive products) and Figure 6 (extent of tephra distribution 

649 in Auckland). The DEVORA Scenarios also involved a variety of different eruptive styles and 

650 occur over different periods of the year (Figure 7).
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651
652 Figure 5: Cumulative proximal deposits of each scenario at the end of the eruption. Note: 
653 Scenario C is based on different modelling parameters from the rest of the scenarios (Deligne 
654 et al. 2015b, 2017a).
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655

656
657 Figure 6: Cumulative distal tephra fall of each scenario at the end of the eruption. Black 
658 triangle indicates location of vent.
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659
660 Figure 7: Timeline of each DEVORA scenario.
661
662 The detected unrest durations for the DEVORA eruption scenarios fall within 4–660 days 

663 (Figure 7). All unrest durations fit within the estimated range for detected magma ascent 

664 estimated for in the AVF, except for Scenario H: Rangitoto Island, which was developed to 

665 include multiple intrusions and thus a long, but sporadic, lead-in time. Eruption durations used 

666 in the DEVORA Scenarios suite are 4-320 days (Figure 8); these exclude the time required 

667 for lava to cool down, a potentially important consideration for physical land recovery. The 

668 range of bulk erupted volumes across the DEVORA Scenarios is 1.2x10-2 (Scenario E: 

669 Waitematā Port) to 1.9x10-1 km3 (Scenario H: Rangitoto Island) (Figure 8A). Different eruption 

670 products also have different bulk erupted volumes, indicative of the influence of different 

671 eruptive products through the scenario suite (Figure 8B).
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673
674 Figure 8: A) Bulk erupted volume and B) relative proportion of different eruptive products of 
675 each of the DEVORA Scenarios

676 5. Discussion

677 5.1 Benefits of including stakeholder engagement in volcanic 
678 eruption scenario development
679 A key objective of this work was to develop a suite of multi-hazard eruption scenarios that 

680 integrates multiple stakeholder requirements to meet a variety of disaster risk reduction 

681 applications (e.g. impact/risk analysis, emergency management training, and public 
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682 communication). Knowledge transfer literature indicates that there are three primary 

683 requirements that must be balanced for information to be useful for stakeholders: credibility, 

684 salience, and legitimacy (Cash and Clark 2001; Guston 2001; Cash et al. 2002, 2003; Cash 

685 and Buizer 2005; McNie 2007; Sarkki et al. 2014). Here, credibility means that the information 

686 meets accepted standards and uses appropriate methodological approaches (Cash and Clark 

687 2001). The approach used in this work was successful at establishing credibility of the 

688 scenarios by working with and consulting people with expertise across all elements of AVF 

689 volcanism, including actively seeking out thought leaders across key domains (e.g. physical 

690 volcanology, geochemistry, geophysics). This was effective at ensuring that appropriate 

691 literature was consulted, methodologies were sound, and assumptions were reasonable, 

692 which was important due to the inherent complexity involved in integrating information from 

693 different volcanology domains. 

694

695 Salience means that the information developed can help answer the questions and needs of 

696 stakeholders. For information to be relevant to stakeholder needs it must accomplish two 

697 objectives: 1) the content must be appropriate for its intended use, and 2) the information must 

698 be provided in a timely manner so that it can be acted upon. Critical to both of these objectives 

699 is creating an environment that is conducive for developing shared understanding between 

700 different stakeholder groups. This is because what might appear to be relevant information to 

701 one group (e.g. scientists), may not appear to be relevant to another group (e.g. decision-

702 makers) and vice versa (Cash et al. 2002). We hope our approach was successful at obtaining 

703 relevance by embedding end-users into the scenario development process to ensure they 

704 were useful and useable. Also, they were produced as part of DEVORA, a long-standing 

705 transdisciplinary research programme that strongly integrates stakeholder perspectives into 

706 the strategic research direction of the programme (Deligne et al. 2015a). At the time of writing, 

707 the scenarios are being actively used by emergency management, infrastructure managers 

708 and other hazard and risk researchers. We also acknowledge the long history of the use of 

709 scenario planning for assessing volcanic risk in Auckland (Daly and Johnston 2015). This 
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710 legacy and the long-standing relationships were able to be leveraged both formally and 

711 informally. Through engagement at workshops, stakeholders such as risk scientists, policy 

712 advisors, and emergency management officials were able to discuss their wants and needs 

713 directly with those with expertise in volcanology and volcanic impacts. This was important for 

714 three reasons: 1) it allowed for pragmatic solutions to be identified for complex scientific 

715 problems, 2) it provided scientists with information about the desires of stakeholders, which 

716 provides a pathway for scientists to identify strategic future research directions, and 3) it gave 

717 stakeholders an appreciation for the technical limitations of existing research and knowledge 

718 regarding the AVF, which was important for their understanding of likely scientific limitations 

719 during a future volcanic crisis. 

720

721 Legitimacy is the perception that: 1) those that produce the work are perceived to be free of 

722 bias and inclusive, 2) transparent processes have been undertaken to produce the information 

723 and 3) mutual trust and respect exists between the producer(s) and user(s) of the information 

724 (Cash et al. 2003; McNie 2007). Legitimacy can be challenged if key stakeholders are 

725 excluded from contributing to the process (Cash et al. 2002). We hope were able to achieve 

726 at least some legitimacy by taking an open and collaborative approach, which has created 

727 useful, useable, and used scenarios.

728

729 Each component of information usability (credibility, salience, and legitimacy) requires careful 

730 balancing. While tempting to continually push for greater and greater credibility, this can also 

731 come at the expense of salience and/or legitimacy. For example, the creation of new modelling 

732 approaches that are highly customised to the AVF may increase the credibility of some of the 

733 scenario outputs. Unfortunately, this may take considerable time and money to complete, 

734 which may mean that planning cycles that other stakeholders and end-users must adhere to 

735 are surpassed and the information is no longer remains actionable. It is important to note this 

736 is not to downplay the importance of credibility, but rather that pragmatism and compromise 

737 may be necessary to ensure that information is actionable within a reasonable timeframe. 
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738 Similarly, including non-traditional stakeholders within the knowledge development process 

739 may lead to some viewing this as reducing the credibility of a research output (Thompson et 

740 al. 2017). However, excluding them from the process entirely can mean the work loses 

741 legitimacy from the perspective of non-traditional stakeholders. Balancing each of these 

742 considerations is challenging and is often a source of tension in interdisciplinary projects 

743 (Linnerooth-Bayer et al. 2016; Scolobig et al. 2016).

744

745 5.2 Limitations and future research

746 5.2.1 Testing sensitivity of scenario choices
747 The objective of this work was to develop scenarios that could be used to identify important 

748 planning issues, but not to predict or forecast the next eruption within the AVF. In fact, it is 

749 almost certain that the next eruption within the AVF will not be in the location and/or follow the 

750 narrative of one of the scenarios produced within this work. Thus, there is a question of how 

751 sensitive the resulting scenarios, their impacts, and the necessary contingency planning 

752 considerations are to choices made in this work (e.g. vent location, hazard model choice, 

753 eruption parameters). When constructing the DEVORA Scenarios we emphasised elements 

754 that would likely considerably influence the resulting impacts that will occur from a future AVF 

755 eruption (vent location, eruption volume, eruption duration, seismic unrest, eruption style) in 

756 an effort to capture both a variety of eruptive phenomena and likely major impacts to urban 

757 Auckland under the assumption that these would cover most of the necessary contingency 

758 planning requirements. However, for a more comprehensive analysis of volcanic hazard and 

759 risk, it will be useful to explore how these choices influence variability in societal impacts from 

760 an AVF eruption. The next step, which aims to consider some of these issues, will be to 

761 develop scenario ensembles, which will simulate the scenarios on a grid across Auckland and 

762 assign a conditional and relative probability to each scenario (supplementary material 1). The 

763 vision is to have a ready to use rapid impact assessment tool with a pre-run library of impact 

764 scenarios that could be utilised during a future eruption crisis as well as to explore long-term 
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765 pre-event policy decisions (e.g., how long-term changes in land use will influence expected 

766 losses).

767

768

769
770 Figure 9: Past, present, and future DEVORA AVF scenario development.
771

772 5.2.2 Multi-hazard scenario planning and development
773 Volcanic eruptions can affect society through multiple interacting hazards (Neri et al. 2013; 

774 Hutchison et al. 2016; Zuccaro et al. 2018). This can occur where different volcanic hazards 

775 affect different parts of a volcanic region, multiple hazards affect the same part of a community, 

776 and/or multiple hazards affect a community through time. Therefore, it is important to consider 

777 the implications of these interactions as they may result in a greater severity to society than 

778 their individual parts might suggest (Kappes et al. 2012). For example, earthquakes 

779 associated with precursory volcanic activity may damage buildings, consequently increasing 

780 their vulnerability of collapse when tephra is deposited on their roofs later during an eruption 

781 (Zuccaro and De Gregorio 2013). This presents a challenge regarding robustly modelling 

782 these interactions. In the AVF, there are several different volcanic hazards that can occur 

783 throughout an eruption sequence. It was difficult to model such phenomena in the AVF, 

784 particularly because hazard models often do not have capacity to consider potential 

785 interactions between all of these different volcanic hazards and it was not within our scope to 

786 develop such models. Thus, we were reliant upon expert judgement to consider hazard 

787 interactions and cascades. Event trees have been used to develop structured and probabilistic 

788 hazard assessments (Newhall and Hoblitt 2001; Neri et al. 2008; Lindsay et al. 2010), but 

789 each volcanic hazard is still often treated separately from one another, which limits capacity 
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790 to explore complex evolution of volcanism through an eruptive sequence. This may not cause 

791 too many practical problems in some volcanic environments (e.g. where risk is dominated by 

792 a single volcanic hazard) or for some volcanic risk applications (e.g. maximum extent of PDC 

793 runout for evacuation purposes). However, in the AVF such considerations are likely to be 

794 important to consider as their interactions may considerably influence the resulting impacts to 

795 society. Thus, to build upon this work, we suggest development of more formalised 

796 assessment frameworks for considering multi-volcanic hazard environments (ideally 

797 incorporating probabilistic methods) to produce scenarios like this would be advantageous to 

798 enhance transparency within the approach. 

799

800 5.2.3 Issues for consideration when adapting this approach for other 
801 volcanic settings
802 Applying this approach in other volcanic settings may call for some adjustments to the 

803 approach presented here. The DEVORA Scenarios were produced in a setting that has a 

804 relatively high degree of geological information to draw from, but no historical or instrumental 

805 records. This meant we also had to rely heavily on analogue eruptions. If we had written 

806 records or indigenous knowledge of a past eruption, we would very likely have looked to 

807 develop this as a scenario. Although it is extremely unlikely a future eruption would repeat the 

808 events of a previous eruption, using a highly socialised eruption scenario would serve as a 

809 useful communication device to explain expected phenomena. After all, the utility of a scenario 

810 is to envision, anticipate, communicate, and train for potential issues that may arise in a 

811 disaster and not a rigid prediction (Alexander 2015). Utilising oral tradition and indigenous 

812 knowledge would also serve as a valuable co-design and engagement process that would 

813 allow two-way knowledge transfer (King et al. 2007; Becker et al. 2008; Cronin and Cashman 

814 2008; Mercer et al. 2012; Hiwasaki et al. 2014). 

815 Our scenario development process reinforced the following lessons:
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816  It is important to identify key stakeholders early in the scenario development process. 

817 This can be achieved by exploring links within existing volcano scientific advisory 

818 groups. 

819  It is important to first establish the key issues that need to be addressed. Naturally, this 

820 requires bringing together key stakeholders to identify major issues. We utilised a 

821 brainstorming session with key researchers, and then we confirmed the decisions with 

822 additional stakeholders through a formalised workshop and informal meetings. It is 

823 necessary that the issues are broad and challenge existing assumptions to ensure that 

824 important aspects are not being overlooked. 

825  Terminology is a commonly cited challenge associated with conducting 

826 interdisciplinary research and it can be easy to become distracted debating 

827 terminology, which presents a risk to the project outcomes (Golde and Gallagher 1999; 

828 Jakobsen et al. 2004; Davidson 2015; Thompson et al. 2017; Hardy 2018). An example 

829 from our experience is that “geophysical” had different meanings to different disciplines 

830 and individuals. We opted to utilise a shared meanings approach (Doyle et al. 2017; 

831 Hardy 2018). The shared meanings approach advocates for acceptance of different 

832 disciplinary approaches. In a practical sense, this required co-writing of the written 

833 report on the scenarios, where stakeholders could have input into the writing and state 

834 areas that were confusing or highlight terminology that they did not understand. We 

835 also developed a glossary of technical terms to provide clarity regarding how we were 

836 using each term. 

837  Establishing ‘buy-in’ from stakeholders (including scientistis) to the process is 

838 important to ensure that stakeholders have confidence in the work, and that their time 

839 and expertise will be appropriately utilised (Davies et al. 2015; Johnson 2019). This 

840 can be facilitated by utilising existing and long-term relationships built through regular 

841 engagement. Regular events (e.g., annual forums and workshops) and collaboration 

842 with researchers in other research programmes was a beneficial element to ensuring 
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843 engagement amongst stakeholders. A second useful factor was leveraging and 

844 adapting an already well socialised piece of work. In our situation, we built upon the 

845 existing national disaster simulation scenario ‘Exercise Ruaumoko’, with which many 

846 stakeholders were familiar and could see the potential benefits of additional scenarios 

847 for disaster risk reduction purposes. In other words, the development of the Scenario 

848 C: Māngere Bridge provided insights to the utility of such scenarios and drove demand 

849 for an entire suite of scenarios. Thus, where possible, leverage existing institutions, 

850 entities, and/or previous work.

851  An important consideration is that the scenario development process can represent an 

852 ‘end’ of the knowledge development process for some stakeholders (e.g., physical 

853 scientists) and the ‘beginning’ for others (e.g., impact researchers, emergency 

854 managers). Incorrect interpretations, misunderstandings, and intellectual property 

855 issues are abundant when conducting interdisciplinary research (Golde and Gallagher 

856 1999; Davidson 2015; Hardy 2018). Thus, a delicate balancing act was required that 

857 promoted the timely completion of the DEVORA Scenarios for user uptake (ensuring 

858 relevance) and paying due respect to the substantial knowledge development that had 

859 been conducted by previous researchers (ensuring credibility and legitimacy). By 

860 opening up the scenario review process to all DEVORA-affiliated researchers (past 

861 and present), we gave scientific researchers the opportunity to showcase how their 

862 research was being utilised, and to confirm suitable application (ensuring legitimacy). 

863 This helped clarify misunderstandings and incorrect interpretations and enhanced the 

864 legitimacy of the scenarios amongst stakeholders. 

865 6. Conclusions
866 We have presented an overview of our interdisciplinary approach to developing a suite of 

867 eruption scenarios for the AVF. The DEVORA Scenarios cover a credible range of erupted 

868 volumes, durations, detected unrest durations, hazards, and potential volcanic centre 
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869 locations. We anticipate they will serve as the basis for future studies assessing a range of 

870 impacts to Auckland’s urban functionality, and will facilitate discussions about the potential 

871 disaster risk reduction requirements in the event of a reactivation of eruptive activity within the 

872 AVF. It is highly unlikely that one of the scenarios developed in this work will be the next 

873 eruption within the AVF. However, forecasting the next event is not the intention of a scenario 

874 planning process. It is instead to use the scenario planning process as a unifying link between 

875 the typical domain of scientists and decision-makers. Our approach required utilising a variety 

876 of scientific disciplines to underpin evidence used throughout the scenario development 

877 process. The DEVORA Scenarios development process was driven by a strong interest from 

878 stakeholders on the potential variety of impacts from future volcanism in the AVF, and 

879 engagement with stakeholders was an important part of the scenario development process 

880 along with underpinning scientific evidence. The interdisciplinary approach ensured the 

881 scenarios were scientifically credible, relevant to all stakeholders, and legitimised within the 

882 DEVORA research community of practice. The end product was a suite of eruption scenarios 

883 that will serve the community for years to come, but equally important as the final product was 

884 undertaking the process, and learning the needs and limitations of all stakeholders. Although 

885 the approach undertaken in this work involved development of an interdisciplinary framework 

886 for producing a suite of eruption scenarios in areas where future volcanism is widely distributed 

887 and highly uncertain (e.g., volcanic fields and calderas), much of the interdisciplinary approach 

888 is transferrable to any volcanic setting.

889
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906 Supplementary Material 1
907

908
909 Figure S1: DEVORA grid nodes for probabilistic scenario ensembles. Note: The area within 
910 5 km beyond the Runge et al. (2015) extent indicates a qualitatively less likely area of future 
911 vent emergence that cannot be ruled out. 
912
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